File:Julia set of the quadratic polynomial f(z) = z^2 - 1.12 + 0.222i.png

Original file(4,000 × 2,000 pixels, file size: 547 KB, MIME type: image/png)

Captions

Captions

Add a one-line explanation of what this file represents

Summary edit

Description
English: This image shows the Julia set for a certain parameter in the quadratic family. It was created in response to a request by Professor Brandon Taylor (Ruskin School of Fine Art, Oxford and University of Southampton) for an image that would illustrate self-similarity of Julia sets.

The parameter c = -1.12 + 0.222i was chosen in the "dancing rabbits" component; i.e., the period 6 hyperbolic component bifurcating from the period 2 component of the Mandelbrot set. This choice was to create a distinctive subset of the Julia set that is clearly repeated at different scales. In addition, the choice was made to choose the multiplier to be non-real and with modulus close to 1, to create the distinctive "spiralling" structure near the repelling period two cycle, which again can be seen repeated throughout the Julia set.

The (original) image was drawn using a general-purpose heuristic that estimates the distance to the Julia set using the size of the derivative and the distance to the beta-fixed point. See also: Étienne Ghys: Dynamics à la Dennis Sullivan[1]
Date
Source Own work
Author Lasse Rempe-Gillen
Other versions

Licensing edit

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution
This file is licensed under the Creative Commons Attribution 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Summary edit

  • parameter c is inside period 6 components of Mandelbrot set with angled internal adress : .
  • Input polynomial p(z)=(1+0i)*z^2+(-1.120000000000000+0.22200000000000000i)
  • 1 critical points found cp#0: 0,0 . It's critical orbit is bounded and enters cycle #0 length=6

period 6 attracting orbit = limit cycle edit

  • it's stability = |multiplier|=0.95429 =attractive
  • cycle = { 0.23468426700349498404,-0.22442972485953274764 ; -1.1152919962215579464,0.11665974905508900983 ; 0.11026673978627110628,-0.038219368804712466892 ; -1.1093019662487375587,0.21357134961043047761 ; 0.064938130948894556838,-0.251830236114494177 ; -1.1792015069703463137,0.18929323030061190325 ; }


Period 2 repelling orbit edit

  • z = -1.133085054887219 +0.175489847915920 i
  • z = 0.133085054887219 -0.175489847915920 i


Orbit portrait of period 2 orbit with valence 3 is :[2]


Multiplier:

  • radius = 1.00943e+00
  • angle = 0.328869498392730553 (in turns)

m-describe by Claude Heiland-Allen edit

m-describe 200 6 10000 -1.12 0.222 8
the input point was -1.1200000000000000000000000000000000000000000000000000000000005e+00 + +2.2200000000000000000000000000000000000000000000000000000000002e-01 i
the point didn't escape after 10000 iterations
nearby hyperbolic components to the input point:

- a period 1 cardioid
  with nucleus at +0e+00 + +0e+00 i
  the component has size 1.00000e+00 and is pointing west
  the atom domain has size 0.00000e+00
  the atom domain coordinates of the input point are -nan + -nan i
  the atom domain coordinates in polar form are nan to the east
  the nucleus is 1.14179e+00 to the east of the input point
  the input point is exterior to this component at
  radius 1.36175e+00 and angle 0.477832873863374696 (in turns)
  the multiplier is -1.34856e+00 + +1.89052e-01 i
  a point in the attractor is -6.74286e-01 + +9.45244e-02 i
  external angles of this component are:
  .(0)
  .(1)

- a period 2 circle
  with nucleus at -1e+00 + +0e+00 i
  the component has size 5.00000e-01 and is pointing west
  the atom domain has size 1.00000e+00
  the atom domain coordinates of the input point are -0.12 + +0.222 i
  the atom domain coordinates in polar form are 0.25236 to the north-north-west
  the nucleus is 2.52357e-01 to the south-south-east of the input point
  the input point is exterior to this component at
  radius 1.00943e+00 and angle 0.328869498392730553 (in turns)
  the multiplier is -4.80000e-01 + +8.88000e-01 i
  a point in the attractor is +1.33045e-01 + -1.75343e-01 i

- a period 6 circle
  with nucleus at -1.1380005e+00 + +2.4033237e-01 i
  the component has size 5.29939e-02 and is pointing north-north-west
  the atom domain has size 1.03599e-01
  the atom domain coordinates of the input point are +0.18517 + +0.13088 i
  the atom domain coordinates in polar form are 0.22676 to the north-east
  the nucleus is 2.56924e-02 to the north-west of the input point
  the input point is interior to this component at
  radius 9.54286e-01 and angle 0.043426459533700348 (in turns)
  the multiplier is +9.18982e-01 + +2.57164e-01 i
  a point in the attractor is +1.1026669e-01 + -3.8219392e-02 i
  external angles of this component are:
  .(010110)
  .(011001)

c source code edit

/*
 



  Adam Majewski
  adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero 
  
  
  
  Structure of a program or how to analyze the program 
  
  
  ============== Image X ========================
  
  DrawImageOfX -> DrawPointOfX -> ComputeColorOfX 
  
  first 2 functions are identical for every X
  check only last function =  ComputeColorOfX
  which computes color of one pixel !
  
  

   
  ==========================================

  
  ---------------------------------
  indent d.c 
  default is gnu style 
  -------------------



  c console progam 
  
  export  OMP_DISPLAY_ENV="TRUE"	
  gcc d.c -lm -Wall -march=native -fopenmp
  time ./a.out > b.txt


  gcc d.c -lm -Wall -march=native -fopenmp


  time ./a.out

  time ./a.out >i.txt
  time ./a.out >e.txt
  
  
  
  
  
  
  convert -limit memory 1000mb -limit disk 1gb dd30010000_20_3_0.90.pgm -resize 2000x2000 10.png

  
  
  
*/

#include <stdio.h>
#include <stdlib.h>		// malloc
#include <string.h>		// strcat
#include <math.h>		// M_PI; needs -lm also
#include <complex.h>
#include <omp.h>		// OpenMP
#include <limits.h>		// Maximum value for an unsigned long long int



// https://sourceforge.net/p/predef/wiki/Standards/

#if defined(__STDC__)
#define PREDEF_STANDARD_C_1989
#if defined(__STDC_VERSION__)
#if (__STDC_VERSION__ >= 199409L)
#define PREDEF_STANDARD_C_1994
#endif
#if (__STDC_VERSION__ >= 199901L)
#define PREDEF_STANDARD_C_1999
#endif
#endif
#endif




/* --------------------------------- global variables and consts ------------------------------------------------------------ */



// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1 
//unsigned int ix, iy; // var
static unsigned int ixMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int ixMax;	//
static unsigned int iWidth;	// horizontal dimension of array

static unsigned int iyMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int iyMax;	//

static unsigned int iHeight = 10000;	//  
// The size of array has to be a positive constant integer 
static unsigned long long int iSize;	// = iWidth*iHeight; 

// memmory 1D array 
unsigned char *data;
unsigned char *edge;
//unsigned char *edge2;

// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax;	// = i2Dsize-1  = 
// The size of array has to be a positive constant integer 
// unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array



// see SetPlane

double radius = 0.9; 
complex double center = 0.0;
double  DisplayAspectRatio  = 2.0; // https://en.wikipedia.org/wiki/Aspect_ratio_(image)
// dx = dy compare setup : iWidth = iHeight;
double ZxMin; //= -1.3;	//-0.05;
double ZxMax;// = 1.3;	//0.75;
double ZyMin;// = -1.3;	//-0.1;
double ZyMax;// = 1.3;	//0.7;
double PixelWidth;	// =(ZxMax-ZxMin)/ixMax;
double PixelHeight;	// =(ZyMax-ZyMin)/iyMax;

double ratio; 


/*
  ER = pow(10,ERe);
  AR = pow(10,-ARe);
*/
//int ARe ;			// increase ARe until black ( unknown) points disapear 
//int ERe ;
double ER;
double ER2;			//= 1e60;
double AR; // bigger values do not works
double AR2;
double AR12;



int IterMax = 100000;


/* colors = shades of gray from 0 to 255 

   unsigned char colorArray[2][2]={{255,231},    {123,99}};
   color = 245;  exterior 
*/
unsigned char iColorOfExterior = 245;
unsigned char iColorOfInterior1 = 99;
unsigned char iColorOfInterior2 = 183;
unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 5;

// pixel counters
unsigned long long int uUnknown = 0;
unsigned long long int uInterior = 0;
unsigned long long int uExterior = 0;



// periodic points = attractors
int iPeriod = 6;
complex double zp6=  0.11026673978627110628-0.038219368804712466892*I ; // period 6



/*

  f(z)=z^6+A*z+c
  A=(-33725751,810162*i)*2^-25
  c=(-3096576+8798208*i)*2^-25


  c is case sensitive 
  changed to lower because A is used 
*/

char * sFunction = "f(z) = z^2 +c where c = -1.12 + 0.222*I";
complex double c = -1.12 + 0.222*I;

/* ------------------------------------------ functions -------------------------------------------------------------*/





//------------------complex numbers -----------------------------------------------------





// from screen to world coordinate ; linear mapping
// uses global cons
double
GiveZx (int ix)
{
	return (ZxMin + ix * PixelWidth);
}

// uses globaal cons
double
GiveZy (int iy)
{
	return (ZyMax - iy * PixelHeight);
}				// reverse y axis


complex double
GiveZ (int ix, int iy)
{
	double Zx = GiveZx (ix);
	double Zy = GiveZy (iy);

	return Zx + Zy * I;




}



double cabs2(complex double z){

	return creal(z)*creal(z)+cimag(z)*cimag(z);


}


//A=(-33725751,810162*i)*2^-25
//c=(-3096576+8798208*i)*2^-25
complex double ToComplexDouble( double m, double n){

	return (m+n*I)/pow(2.0,25.0);
	


}



// =====================
int IsPointInsideTrap1(complex double  z){

	
	 
	
	if ( cabs2(z - zp6) < AR2) {return 1;} // circle with prabolic point zp on it's boundary
	return 0; // outside



}



// =====================
int IsPointInsideTrap2(complex double  z){

	
	//if (cabs2(z - zp2) <AR2) {return 1;} // circle around periodic point
	
	return 0; // outside



}









// ****************** DYNAMICS = trap tests ( target sets) ****************************


/* -----------  array functions = drawing -------------- */

/* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */
unsigned int
Give_i (unsigned int ix, unsigned int iy)
{
	return ix + iy * iWidth;
}



// f(z)=1+z−3z2−3.75z3+1.5z4+2.25z5
unsigned char
ComputeColor_Fatou (complex double z, int IterMax)
{



	
	
	double r2;


	int i;			// number of iteration
	for (i = 0; i < IterMax; ++i)
	{


		
		z = z*z +c;		// complex iteration f(z)=z^6+A*z+c
		r2 =cabs2(z);
		
		if (r2 > ER2) // esaping = exterior
		{
			uExterior += 1;
			return iColorOfExterior;
		}			
	
	
	
		if ( IsPointInsideTrap1(z)) {
			uInterior +=1;
			return 100 + 20*(i % iPeriod); }
	
		
	

	}

	uUnknown += 1;
	return iColorOfUnknown;


}





// plots raster point (ix,iy) 
int
DrawFatouPoint (unsigned char A[], int ix, int iy, int IterMax)
{
	int i;			/* index of 1D array */
	unsigned char iColor = 0;
	complex double z;


	i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
	z = GiveZ (ix, iy);
	iColor = ComputeColor_Fatou (z, IterMax);
	A[i] = iColor;		// interior

	return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int
DrawFatouImage (unsigned char A[], int IterMax)
{
	unsigned int ix, iy;		// pixel coordinate 

	fprintf (stdout, "compute Fatou image \n");
	// for all pixels of image 
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior, uExterior)
	for (iy = iyMin; iy <= iyMax; ++iy)
	{
		fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
		for (ix = ixMin; ix <= ixMax; ++ix)
			DrawFatouPoint (A, ix, iy, IterMax);	//  
	}

	return 0;
}


//=========



int IsInside (int x, int y, int xcenter, int ycenter, int r){

	
	double dx = x- xcenter;
	double dy = y - ycenter;
	double d = sqrt(dx*dx+dy*dy);
	if (d<r) 
		return 1;
	return 0;
	  

} 

int PlotBigPoint(complex double z, unsigned char A[]){

	
	unsigned int ix_seed = (creal(z)-ZxMin)/PixelWidth;
	unsigned int iy_seed = (ZyMax - cimag(z))/PixelHeight;
	unsigned int i;
	
	
	/* mark seed point by big pixel */
	int iSide =3.0*iWidth/2000.0 ; /* half of width or height of big pixel */
	int iY;
	int iX;
	for(iY=iy_seed-iSide;iY<=iy_seed+iSide;++iY){ 
		for(iX=ix_seed-iSide;iX<=ix_seed+iSide;++iX){ 
			if (IsInside(iX, iY, ix_seed, iy_seed, iSide)) {
				i= Give_i(iX,iY); /* index of _data array */
				A[i]= 255-A[i];}}}
	
	
	return 0;
	
}


// fill array 
// uses global var :  ...
// scanning complex plane 
int MarkAttractors (unsigned char A[])
{
  
	
	
	
	fprintf (stderr, "mark attractors \n");
  
	PlotBigPoint(zp6, A);	// period 6 attracting cycle
    		 
      	

	return 0;
}


// =====================
int IsPointInsideTraps(unsigned int ix, unsigned int iy){

	
	complex double  z = GiveZ (ix, iy);
	
	if ( IsPointInsideTrap1(z)) {return 1;} // circle with prabolic point on it's boundary
	
	//if (IsPointInsideTrap2(z)) {return 1;}
	
	return 0; // outside



}





int MarkTraps(unsigned char A[]){

	unsigned int ix, iy;		// pixel coordinate 
	unsigned int i;


	fprintf (stderr, "Mark traps \n");
	// for all pixels of image 
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior, uExterior)
	for (iy = iyMin; iy <= iyMax; ++iy)
	{
		fprintf (stderr, " %d from %d \r", iy, iyMax);	//info 
		for (ix = ixMin; ix <= ixMax; ++ix){
			if (IsPointInsideTraps(ix, iy)) {
				i= Give_i(ix,iy); /* index of _data array */
				A[i]= 255-A[i]; // inverse color
			}}}
	return 0;
}






int PlotPoint(complex double z, unsigned char A[]){

	
	unsigned int ix = (creal(z)-ZxMin)/PixelWidth;
	unsigned int iy = (ZyMax - cimag(z))/PixelHeight;
	unsigned int i = Give_i(ix,iy); /* index of _data array */
	
	
	A[i]= 255-A[i]; // Mark point with inveres color
	
	
	return 0;
	
}




// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************

// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
 
	unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
	unsigned int i; /* index of 1D array  */
	/* sobel filter */
	unsigned char G, Gh, Gv; 
	// boundaries are in D  array ( global var )
 
	// clear D array
	memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);
 
	// printf(" find boundaries in S array using  Sobel filter\n");   
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
	for(iY=1;iY<iyMax-1;++iY){ 
		for(iX=1;iX<ixMax-1;++iX){ 
			Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
			Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
			G = sqrt(Gh*Gh + Gv*Gv);
			i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
			if (G==0) {D[i]=255;} /* background */
			else {D[i]=0;}  /* boundary */
		}
	}
 
   
 
	return 0;
}



// copy from Source to Destination
int CopyBoundaries(unsigned char S[],  unsigned char D[])
{
 
	unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
	unsigned int i; /* index of 1D array  */
 
 
	//printf("copy boundaries from S array to D array \n");
	for(iY=1;iY<iyMax-1;++iY)
		for(iX=1;iX<ixMax-1;++iX)
		{i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
 
 
 
	return 0;
}
















// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************

int
SaveArray2PGMFile (unsigned char A[], int a, int b,  int c, char *comment)
{

	FILE *fp;
	const unsigned int MaxColorComponentValue = 255;	/* color component is coded from 0 to 255 ;  it is 8 bit color file */
	char name[100];		/* name of file */
	snprintf (name, sizeof name, "%d_%d_%d", a, b, c );	/*  */
	char *filename = strcat (name, ".pgm");
	char long_comment[200];
	sprintf (long_comment, "%s  %s", sFunction, comment);





	// save image array to the pgm file 
	fp = fopen (filename, "wb");	// create new file,give it a name and open it in binary mode 
	fprintf (fp, "P5\n # %s\n %u %u\n %u\n", long_comment, iWidth, iHeight, MaxColorComponentValue);	// write header to the file
	fwrite (A, iSize, 1, fp);	// write array with image data bytes to the file in one step 
	fclose (fp);

	// info 
	printf ("File %s saved ", filename);
	if (long_comment == NULL || strlen (long_comment) == 0)
		printf ("\n");
	else
		printf (". Comment = %s \n", long_comment);

	return 0;
}




int
PrintCInfo ()
{

	printf ("gcc version: %d.%d.%d\n", __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__);	// https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
	// OpenMP version is displayed in the console : export  OMP_DISPLAY_ENV="TRUE"

	printf ("__STDC__ = %d\n", __STDC__);
	printf ("__STDC_VERSION__ = %ld\n", __STDC_VERSION__);
	printf ("c dialect = ");
	switch (__STDC_VERSION__)
	{				// the format YYYYMM 
	case 199409L:
		printf ("C94\n");
		break;
	case 199901L:
		printf ("C99\n");
		break;
	case 201112L:
		printf ("C11\n");
		break;
	case 201710L:
		printf ("C18\n");
		break;
		//default : /* Optional */

	}

	return 0;
}


int
PrintProgramInfo ()
{


	// display info messages
	printf ("Numerical approximation of Julia set %s\n", sFunction);
	//printf ("iPeriodParent = %d \n", iPeriodParent);
	//printf ("iPeriodOfChild  = %d \n", iPeriodChild);
	//printf ("parameter A = ( %.16f ; %.16f ) \n", creal (a), cimag (a));
	printf ("parameter c = ( %.16f ; %.16f ) \n", creal (c), cimag (c));
  
  

	printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
	printf ("PixelWidth = %.16f \n", PixelWidth);
	printf ("AR = %.16f = %f *PixelWidth\n", AR, AR / PixelWidth);


	printf("pixel counters\n");
	printf ("uUnknown = %llu\n", uUnknown);
	printf ("uExterior = %llu\n", uExterior);
	printf ("uInterior = %llu\n", uInterior);
	printf ("Sum of pixels  = %llu\n", uInterior+uExterior + uUnknown);
	printf ("all pixels of the array = iSize = %llu\n", iSize);


	// image corners in world coordinate
	// center and radius
	// center and zoom
	// GradientRepetition
	printf ("Maximal number of iterations = iterMax = %d \n", IterMax);
	printf ("ratio of image  = %f ; it should be 1.000 ...\n", ratio);
	//




	return 0;
}



int SetPlane(complex double center, double radius, double a_ratio){

	ZxMin = creal(center) - radius*a_ratio;	
	ZxMax = creal(center) + radius*a_ratio;	//0.75;
	ZyMin = cimag(center) - radius;	// inv
	ZyMax = cimag(center) + radius;	//0.7;
	return 0;

}


// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************

int
setup ()
{

	fprintf (stderr, "setup start\n");






	/* 2D array ranges */

	iWidth = iHeight* DisplayAspectRatio ;
	iSize = iWidth * iHeight;	// size = number of points in array 
	// iy
	iyMax = iHeight - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
	//ix

	ixMax = iWidth - 1;

	/* 1D array ranges */
	// i1Dsize = i2Dsize; // 1D array with the same size as 2D array
	iMax = iSize - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].


	SetPlane( center, radius,  DisplayAspectRatio );	
	/* Pixel sizes */
	PixelWidth = (ZxMax - ZxMin) / ixMax;	//  ixMax = (iWidth-1)  step between pixels in world coordinate 
	PixelHeight = (ZyMax - ZyMin) / iyMax;
	ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight);	// it should be 1.000 ...

	ER = 2.0; // 
	ER2 = ER*ER;
	AR = PixelWidth*20.0*iWidth/2000.0 ; // 
	AR2 = AR * AR;
	AR12 = AR/2.0;
  
	//sFunction="";  
	//sprintf (sFunction,  "%f %+f", creal(c), cimag(c) ); // add c	

	
  



	/* create dynamic 1D arrays for colors ( shades of gray ) */
	data = malloc (iSize * sizeof (unsigned char));

	edge = malloc (iSize * sizeof (unsigned char));
	if (data == NULL || edge == NULL)
	{
		fprintf (stderr, " Could not allocate memory");
		return 1;
	}





 


	fprintf (stderr, " end of setup \n");

	return 0;

}				// ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;




int
end ()
{


	fprintf (stderr, " allways free memory (deallocate )  to avoid memory leaks \n");	// https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
	free (data);
	free(edge);


	PrintProgramInfo ();
	PrintCInfo ();
	return 0;

}

// ********************************************************************************************************************
/* -----------------------------------------  main   -------------------------------------------------------------*/
// ********************************************************************************************************************

int
main ()
{
	setup ();


	DrawFatouImage (data, IterMax);	// first find Fatou
	SaveArray2PGMFile (data, iWidth, IterMax, 0, "Fatou, name = iWidth_IterMax_n");
  
	ComputeBoundaries(data,edge);
	SaveArray2PGMFile (edge, iWidth, IterMax, 1, "Boundaries of Fatou; name = iWidth_IterMax_n"); 
  
	CopyBoundaries(edge,data);
	SaveArray2PGMFile (data, iWidth, IterMax, 2, "Fatou with boundaries; name = iWidth_IterMax_n"); 
  
	//MarkAttractors(data);
	MarkTraps(data);
	SaveArray2PGMFile (data, iWidth, IterMax, 4, "Fatou with boundaries and traps; name = iWidth_IterMax_n"); 

	end ();

	return 0;
}

text output edit

OPENMP DISPLAY ENVIRONMENT BEGIN
  _OPENMP = '201511'
  OMP_DYNAMIC = 'FALSE'
  OMP_NESTED = 'FALSE'
  OMP_NUM_THREADS = '8'
  OMP_SCHEDULE = 'DYNAMIC'
  OMP_PROC_BIND = 'FALSE'
  OMP_PLACES = ''
  OMP_STACKSIZE = '0'
  OMP_WAIT_POLICY = 'PASSIVE'
  OMP_THREAD_LIMIT = '4294967295'
  OMP_MAX_ACTIVE_LEVELS = '2147483647'
  OMP_CANCELLATION = 'FALSE'
  OMP_DEFAULT_DEVICE = '0'
  OMP_MAX_TASK_PRIORITY = '0'
  OMP_DISPLAY_AFFINITY = 'FALSE'
  OMP_AFFINITY_FORMAT = 'level %L thread %i affinity %A'
OPENMP DISPLAY ENVIRONMENT END





setup start
end of setup 
compute Fatou image 
File 20000_100000_0.pgm saved . Comment = f(z) = z^2 +c where c = -1.12 + 0.222*I  Fatou, name = iWidth_IterMax_n 
File 20000_100000_1.pgm saved . Comment = f(z) = z^2 +c where c = -1.12 + 0.222*I  Boundaries of Fatou; name = iWidth_IterMax_n 
File 20000_100000_2.pgm saved . Comment = f(z) = z^2 +c where c = -1.12 + 0.222*I  Fatou with boundaries; name = iWidth_IterMax_n 
File 20000_100000_4.pgm saved . Comment = f(z) = z^2 +c where c = -1.12 + 0.222*I  Fatou with boundaries and traps; name = iWidth_IterMax_n 
Numerical approximation of Julia set f(z) = z^2 +c where c = -1.12 + 0.222*I
parameter c = ( -1.1200000000000001 ; 0.2220000000000000 ) 
Image Width = 3.600000 in world coordinate
PixelWidth = 0.0001800090004500 
AR = 0.0360018000900045 = 200.000000 *PixelWidth
pixel counters
uUnknown = 0
uExterior = 91185244
uInterior = 18477474
Sum of pixels  = 109662718
all pixels of the array = iSize = 200000000
Maximal number of iterations = iterMax = 100000 
ratio of image  = 1.000000 ; it should be 1.000 ...
gcc version: 9.3.0
__STDC__ = 1
__STDC_VERSION__ = 201710
c dialect = C18

Mark traps 9999 
 allways free memory (deallocate )  to avoid memory leaks 

real	0m13,670s
user	1m26,360s
sys	0m1,039s

Image Magic src code edit

 convert 20000_100000_2.pgm -resize 4000x2000 2_4.png

References edit

  1. Étienne Ghys: Dynamics à la Dennis Sullivan
  2. John W Milnor : Periodic Orbits, Externals Rays and the Mandelbrot Set: An Expository Account ,1999 , arxiv=math/9905169

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current17:41, 15 August 2020Thumbnail for version as of 17:41, 15 August 20204,000 × 2,000 (547 KB)Soul windsurfer (talk | contribs)better quality
19:21, 30 May 2014Thumbnail for version as of 19:21, 30 May 20143,800 × 1,560 (369 KB)JeffyP (talk | contribs)I'm here to make the world a smaller place ☺
09:44, 7 March 2013Thumbnail for version as of 09:44, 7 March 20133,800 × 1,560 (1.12 MB)L rempe (talk | contribs)User created page with UploadWizard

Metadata