File:SolarCellWithFigures W3C.svg

Original file(SVG file, nominally 900 × 600 pixels, file size: 51 KB)

Captions

Captions

Add a one-line explanation of what this file represents

Summary edit

Description
Deutsch: Funktionsprinzip einer Silizium-Solarzelle in einer Photovoltaik-Anlage. Silizium ist ein Halbleiter. Die Besonderheit von Halbleitern ist, dass durch zugeführte Energie (z. B. elektromagnetische Strahlung) in ihnen freie Ladungsträger erzeugt werden können.[1] (Ideen zur Grafik inspiriert nach der Beschreibung von Lewerenz, Jungblut 1995[2])

(1) Die obere Siliziumschicht ist mit Elektronenspendern (z.B. Phosphoratomen) durchsetzt – negativ dotiert. Hier gibt es zu viele Elektronen (n-Schicht).

(2) Die untere Siliziumschicht ist mit Elektronen-Akzeptoren (z.B. Boratomen) durchsetzt – positiv dotiert. Hier gibt es zu wenige Elektronen, also zu viele Fehlstellen oder Löcher (p-Schicht).

(3) Im Grenzbereich der beiden Schichten binden sich die überschüssigen Elektronen der Elektronenspender locker an die Fehlstellen der Elektronen-Akzeptoren (sie besetzen die Fehlstellen im Valenzband) und bilden eine neutrale Zone (p-n-Übergang).

(4) Da nun oben Elektronen- und unten Fehlstellenmangel herrscht, bildet sich zwischen der oberen und unteren Kontaktfläche ein ständig vorhandenes elektrisches Feld.

(5) Photonen (Lichtquanten, „Sonnenstrahlen“) gelangen in die Übergangsschicht.

(6) Photonen mit ausreichender Energiemenge übertragen in der neutralen Zone ihre Energie an die locker gebundenen Elektronen im Valenzband der Elektronen-Akzeptoren. Das löst diese Elektronen aus ihrer Bindung und hebt sie als freie Ladungsträger ins Leitungsband. Viele dieser freien Ladungsträger (Elektron-Loch-Paare) verschwinden nach kurzer Zeit durch Rekombination wieder. Einige Ladungsträger driften – bewegt vom elektrischen Feld – zu den Kontakten in die gleichartig dotierten Zonen (s.o.); d. h. die Elektronen werden von den Löchern getrennt, die Elektronen driften nach oben, die Löcher nach unten. Eine Spannung und ein nutzbarer Strom entstehen, solange weitere Photonen ständig freie Ladungsträger erzeugen.

(7) Der „Elektronen“ -Strom fließt durch den „äußeren Stromkreis“ zur unteren Kontaktfläche der Zelle und rekombiniert dort mit den zurückgelassenen Löchern.
English: Functional principle of a silicon solar cell in a photovoltaic system. Silicon is a semiconductor. The special feature of semiconductors is that free charge carriers can be generated in them by supplied energy (e.g. electromagnetic radiation).[1] (Ideas for the graphic inspired by the description by Lewerenz, Jungblut 1995[2])

(1) The upper silicon layer is interspersed with electron donors (e.g. phosphorus atoms) - negatively doped. There are too many electrons here (n-layer).

(2) The lower silicon layer is interspersed with electron acceptors (e.g. boron atoms) - positively doped. Here there are too few electrons, i.e. too many defects or holes (p-layer).

(3) In the border region of the two layers, the excess electrons of the electron donors bind loosely to the vacancies of the electron acceptors (they occupy the vacancies in the valence band) and form a neutral zone (p-n junction).

(4) Since there is now a lack of electrons at the top and a lack of vacancies at the bottom, a constantly present electric field forms between the upper and lower contact surfaces.

(5) Photons (light quanta, "sun rays") enter the transition layer.

(6) Photons with sufficient energy transfer their energy in the neutral zone to the loosely bound electrons in the valence band of the electron acceptors. This releases these electrons from their bond and lifts them into the conduction band as free charge carriers. Many of these free charge carriers (electron-hole pairs) disappear again after a short time through recombination. Some charge carriers drift - moved by the electric field - to the contacts in the similarly doped zones (see above); i.e. the electrons are separated from the holes, the electrons drift upwards, the holes downwards. A voltage and a usable current are created as long as further photons continuously generate free charge carriers.

(7) The "electron" current flows through the "outer circuit" to the lower contact surface of the cell and recombines there with the holes left behind.
Date
Source Own work
Author Michael32710
Attribution
(required by the license)
InfoField
© Michael Pätzold / 
© Michael Pätzold
Software
InfoField
 
This vector image was created with Inkscape .

Licensing edit


w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
Attribution: Foto: Michael Paetzold, Lizenz: Creative Commons by-sa-4.0
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

This file has been released under a license which is incompatible with Facebook's licensing terms. It is not permitted to upload this file to Facebook.

References edit

  1. a b Scholz, Reinhard (2018) (in deutsch) Grundlagen der Elektrotechnik: Eine Einführung in die Gleich- und Wechselstromtechnik, Munich: Carl Hanser Verlag ISBN: 978-3446456310. , S. 35
  2. a b Lewerenz, H.-J. (1995) (in deutsch) Photovoltaik: Grundlagen und Anwendungen, Heidelberg: Springer ISBN: 978-3540585398. , S. 5-12

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current11:57, 6 June 2024Thumbnail for version as of 11:57, 6 June 2024900 × 600 (51 KB)Michael32710 (talk | contribs)missing figures added
22:11, 2 January 2024Thumbnail for version as of 22:11, 2 January 2024800 × 600 (31 KB)Oule20 (talk | contribs)Reverted to version as of 19:37, 25 October 2018 (UTC)
10:09, 31 October 2018Thumbnail for version as of 10:09, 31 October 2018900 × 600 (51 KB)Michael32710 (talk | contribs)external circuit
22:51, 29 October 2018Thumbnail for version as of 22:51, 29 October 2018800 × 600 (50 KB)Michael32710 (talk | contribs)energy transfer
21:42, 28 October 2018Thumbnail for version as of 21:42, 28 October 2018800 × 600 (33 KB)Michael32710 (talk | contribs)figure 7
21:15, 25 October 2018Thumbnail for version as of 21:15, 25 October 2018800 × 600 (32 KB)Michael32710 (talk | contribs)Figure 1-6
19:37, 25 October 2018Thumbnail for version as of 19:37, 25 October 2018800 × 600 (31 KB)Michael32710 (talk | contribs)== {{int:filedesc}} == {{Information |Description = {{de|1=(1) Die obere Siliziumschicht ist mit Phosphoratomen durchsetzt. Hier gibt es zu viele Elektronen (n-Schicht). (2) Die untere Siliziumschicht ist mit Boratomen durchsetzt. Hier gibt es zu wenige Elektronen, also zu viele Fehlstellen oder Löcher (p-Schicht). (3) In der Übergangsschicht bilden die überschüssigen Elektronen mit den überschüssigen Fehlstellen eine neutrale Zone (p-n-Übergang); da nun oben Elektronen- und unten Fehlst...

The following page uses this file:

File usage on other wikis

The following other wikis use this file:

Metadata