# Category:Order-3 hexagonal tiling

Regular tilings of the Euclidean plane: {3,6} {4,4} {6,3} v t
Regular hexagonal tilings: {6,3} {6,4} {6,5} {6,6} {6,7} {6,8} {6,9} {6,10} {6,12} {6,14} {6,16} {6,18} {6,∞} v t
Regular order-3 tilings: {3,3} {4,3} {5,3} {6,3} {7,3} {8,3} {10,3} {12,3} {14,3} {16,3} {18,3} {∞,3}

English: Order-3 hexagonal tiling (hexagonal tiling) is a regular tiling of the Euclidean plane by congruent regular hexagons. It is called order-3 because there are three hexagons around each vertex of the tiling. For comparison, order-2 hexagonal tiling is the hexagonal dihedron, while order-4 hexagonal tiling (and higher) exists on hyperbolic plane.

Русский: Правильный шестиугольный паркет (шестиугольный паркет порядка 3, паркет {6,3}) — паркет на евклидовой плоскости, в каждой вершине которого сходятся три правильных шестиугольника. Шестиугольный паркет порядка 2 (паркет {6,2}) — шестиугольный диэдр, существующий на сфере; паркеты {6,4}, {6,5} и т.п. существуют на гиперболической плоскости.

## Subcategories

This category has the following 2 subcategories, out of 2 total.

• Hex(63 F)

## Media in category "Order-3 hexagonal tiling"

The following 55 files are in this category, out of 55 total.