File:Temperature profile if earth gets 93 percent of current solar radiation 1 r 1.svg

Original file(SVG file, nominally 1,010 × 631 pixels, file size: 53 KB)

Captions

Captions

Temperature profile if Earth gets 93 percent of current solar radiation

Summary edit

Description
English: Temperature profile if earth gets 93 percent of current solar radiation. Assumed full ocean planet.
Date
Source Own work
Author Merikanto

Python3 and Climlab source code

    1. temperatures, if S=0.9*S0
    2. sun radiation down 10% from current.
  1. python3/climblab code
  2. 10.5.2023 0000.0001

import numpy as np import matplotlib.pyplot as plt from matplotlib import cm import climlab from climlab import constants as const

def plot_temp_section(model, timeave=True):

   fig = plt.figure()
   ax = fig.add_subplot(111)
   #viridis = cm.get_cmap('jet')
   #viridis = cm.get_cmap('turbo')
   #viridis = cm.get_cmap('winter')
   viridis = cm.get_cmap('cool_r')
   #viridis = cm.get_cmap('PuBu')
   plt.set_cmap(viridis)
   if timeave:
       field = model.timeave['Tatm'].transpose()
   else:
       field = model.Tatm.transpose()
   cax = ax.contourf(model.lat, model.lev,field-273.15)
   CS = ax.contour(model.lat, model.lev,field-273.15,
                colors='k',  # negative contours will be dashed by default
                )
   ax.clabel(CS,fmt='%1.1f',fontsize=14, inline=1)
   ax.invert_yaxis()
   ax.set_title("Temperature profile, if S=0.93*S0", fontsize=18)
   ax.set_xlabel("Latitude", fontsize=15)
   ax.set_ylabel("Pressure", fontsize=15)
   ax.xaxis.set_tick_params(labelsize=14)
   ax.yaxis.set_tick_params(labelsize=14)
   ax.set_xlim(-90,90)
   ax.set_xticks([-90, -60, -30, 0, 30, 60, 90])
   cbar1=fig.colorbar(cax)
   cbar1.ax.tick_params(labelsize=15)


rau=1.0 ## planet a au S1=1365.2

  1. insok=1/(rau*rau) ## insolation coefficient"

insok=0.93 alb=0.299

  1. alb=0.06

greenhouse=0.0 cloudiness=1 waterdepth=100

print(rau, insok)


    1. not used

delta_t = 60. * 60. * 24. * 30


absorber_vmr = {'CO2':420/1e6,

               'CH4':0.,
               'N2O':0.,
               'O2':0.,
               'CFC11':0.,
               'CFC12':0.,
               'CFC22':0.,
               'CCL4':0.,
               'O3':0.}


  1. state = climlab.column_state(num_lev=20, num_lat=1, water_depth=5.)

state = climlab.column_state(num_lev=12, num_lat=16, water_depth=waterdepth)



insol = climlab.radiation.DailyInsolation(name='Insolation',

                                         domains=state['Ts'].domain, S0=S1*insok)


  1. olr = climlab.radiation.Boltzmann(name='OutgoingLongwave',state=state, tau = 0.612,eps = 1.,timestep = delta_t)


  1. asr = climlab.radiation.SimpleAbsorbedShortwave(name='AbsorbedShortwave',
  2. state=state,
  3. insolation=341.3,
  4. insolation=insol.insolation,
  5. albedo=alb,
  6. timestep = delta_t)
  1. rcm=climlab.TimeDependentProcess(state=state)



  1. h2o = climlab.radiation.ManabeWaterVapor(name='H2O', state=state)

h2o = climlab.radiation.ManabeWaterVapor(state=state, relative_humidity=0.5)

  1. CAM3 radiation with default parameters and interactive water vapor
  1. rad = climlab.radiation.CAM3(name='Radiation', state=state,specific_humidity=h2o.q, albedo=alb)

rad = climlab.radiation.CAM3(name='Radiation', state=state, return_spectral_olr=True, icld=cloudiness, S0 = insol.S0*insok*(1+greenhouse), insolation=insol.insolation, coszen=insol.coszen

  1. absorber_vmr = absorber_vmr2

)

print(insol.S0)

  1. rad = climlab.radiation.CAM3(name='Radiation',
  2. state=state,
  3. specific_humidity=h2o.q,
  4. S0 = insol.S0,
  5. insolation=insol.insolation,
  6. coszen=insol.coszen)
  1. rad = climlab.radiation.RRTMG_LW(state=state,
  2. specific_humidity=h2o.q,
  3. S0 = insol.S0,
  4. insolation=insol.insolation,
  5. icld=0, # Clear-sky only!
  6. return_spectral_olr=False, # Just return total OLR
  7. absorber_vmr = absorber_vmr)


conv = climlab.convection.ConvectiveAdjustment(name='Convective Adjustment',state=state, adj_lapse_rate=6.5)


rcm = climlab.couple([rad,conv,h2o, insol], name='RCM')


  1. print(rcm)
  1. quit(-1)


  1. rcm.add_subprocess('Radiation', rad)
  2. rcm.add_subprocess('WaterVapor', h2o)
  3. rcm.add_subprocess('Convection', conv)


  1. rcm.integrate_years(1)

rcm.integrate_years(1)


  1. fig, ax = plt.subplots(dpi=100)
  1. state['Tatm'].to_xarray().plot(ax=ax, y='lev', yincrease=False)
  1. state['Tatm'].to_xarray().plot(ax=ax,x='lat', y='lev', yincrease=False)

tatm=state['Tatm']-273.15


  1. quit(-1)
  1. Create and exact clone of the previous model

diffmodel = climlab.process_like(rcm)

diffmodel.name = 'Seasonal RCE with heat transport'

  1. thermal diffusivity in W/m**2/degC

D = 0.05

  1. D=0.0001
  1. meridional diffusivity in m**2/s

K = D / diffmodel.Tatm.domain.heat_capacity[0] * const.a**2 print("K ", K) d = climlab.dynamics.MeridionalDiffusion(K=K, state={'Tatm': diffmodel.Tatm}, **diffmodel.param) diffmodel.add_subprocess('Meridional Diffusion', d)

  1. diffmodel = climlab.couple([rad,conv,h2o, insol,d], name='Seasonal diffmodel')


print(diffmodel)

diffmodel.integrate_years(1) diffmodel.integrate_years(50)

tatm2=state['Tatm']-273.15

print(tatm2)

print("Plot ")

plot_temp_section(rcm, timeave=True)

  1. plot_temp_section(diffmodel, timeave=True)

plot_temp_section(diffmodel, timeave=True)


tlayer1=tatm[...,11].ravel() tlayer2=tatm[...,11].ravel()

  1. print (" Tatmlen",len(tlayer1))

tlayer1=np.nan_to_num(tlayer1) tlayer2=np.nan_to_num(tlayer2)

meantemp=np.mean(tlayer1) meantemp2=np.mean(tlayer2)


print(tlayer1) print(tlayer2)

print(" meantemp A ",meantemp) print(" meantemp B ",meantemp2)



  1. plot_temp_section(rcm, timeave=True)
  1. plt.imshow(tatm)


  1. ax.set_xlabel("Temperature (K)")
  2. ax.set_ylabel("Pressure (hPa)")
  3. ax.grid()
  1. plt.plot()

plt.show()


Licensing edit

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:27, 10 May 2023Thumbnail for version as of 18:27, 10 May 20231,010 × 631 (53 KB)Merikanto (talk | contribs)Upload
17:53, 10 May 2023Thumbnail for version as of 17:53, 10 May 20231,064 × 617 (53 KB)Merikanto (talk | contribs)Uploaded own work with UploadWizard

There are no pages that use this file.

Metadata