File:Fowler Ellipsograph a.gif

Fowler_Ellipsograph_a.gif(600 × 260 pixels, file size: 4.54 MB, MIME type: image/gif, looped, 330 frames, 13 s)

Captions

Captions

Add a one-line explanation of what this file represents

Summary edit

Description
English: Fowler Ellipsograph
Deutsch: Ellipsenzeichner (Ellipsenzirkel) nach Fowler
Date
Source Own work
Author Jahobr
Other versions
GIF development
InfoField
 
This diagram was created with MATLAB by Jahobr.
Source code
InfoField

MATLAB code

function [] = Fowler_Ellipsograph()
% The shape of the gears is not precise, it creates a decent GIF and a SVG.
%
% 2017-05-30 Jahobr

modul=1;

col.green     = round([0.1 0.7 0.1 ]*255)/255; % pin
col.darkGreen = round([0   0.3 0   ]*255)/255; % frame
col.darkGrey  = round([0.5 0.5 0.65]*255)/255; % wheels
col.grey      = round([0.8 0.8 0.8 ]*255)/255; % wheels
col.grey2     = round([0.7 0.7 0.7 ]*255)/255; % slider
col.E         = round([1   0   0   ]*255)/255; % red
teeth = [60 60];
diameter = modul.*teeth;

[pathstr,fname] = fileparts(which(mfilename)); % save files under the same name and at file location

nFrames = 330; % frames per rotation
scaleReduction = 3; % reduction for nice antialiasing
xSize = 600; % pixel
ySize = 260; % pixel
figHandle = figure(15554461); clf

set(figHandle, 'Units','pixel');
set(figHandle, 'position',[1 1 [xSize ySize]*scaleReduction]); % big start image for antialiasing later [x y width height]
set(figHandle, 'GraphicsSmoothing','on') % requires at least version 2014b
axesHandle = axes;
hold(axesHandle,'on')
xlimValues = [-1.05  2.05]*diameter(1); % ADJUST
ylimValues = [-0.7   0.7] *diameter(1); % ADJUST
set(axesHandle,'position',[-0.05 -0.05 1.1 1.1]); % stretch axis bigger as figure, easy way to get rid of ticks [x y width height]
xlim(xlimValues); ylim(ylimValues); % set axis limits
axis equal; drawnow;

angles_wheels = linspace(0.2*pi, 2.2*pi,nFrames+1); % angles for wheel 
angles_wheels = angles_wheels(1:end-1); % remove last frame, it would be double

leftCrank  = diameter(1)*0.2;
rightCrank = diameter(1)*0.35;
reducedRGBimage = uint8(ones(ySize,xSize,3,nFrames)); % allocate

for iFrame = 1:nFrames
    cla(axesHandle)
    curAngle = angles_wheels(iFrame);
    
    plotBox(0.5*diameter(1), 0,1.4*diameter(1),0.578*diameter(1),0,[1 1 1],col.darkGreen,15) % outer frame

    plotBox(0.5*diameter(1)+leftCrank*cos(-curAngle), 0, 1.05*diameter(1),0.556*diameter(1),0,[0.8 0.8 1],[0 0 0.5],5) % sliging blue box
    
    center_L_wheel = [leftCrank*cos(-curAngle) 0]; % Left wheel
    center_R_wheel = [leftCrank*cos(-curAngle)+mean(diameter)  0]; % Right wheel

    drawCogWheel(axesHandle,center_L_wheel,teeth(1),modul,col.darkGrey,-curAngle); %  left cogwheel
    drawCogWheel(axesHandle,center_R_wheel,teeth(2),modul,col.darkGrey, curAngle-(pi/teeth(2))); % right cogwheel
    
    circlePatch(center_L_wheel(1),center_L_wheel(2),diameter(1)*0.47,col.grey,'k',3) %  grey circle
    circlePatch(center_R_wheel(1),center_R_wheel(2),diameter(2)*0.47,col.grey,'k',3) %  grey circle
    
    plotBox(center_L_wheel(1),center_L_wheel(2),eps,diameter(1)*0.1, curAngle,[1 1 1],'k',3) % missuse box to plot a line
    plotBox(center_R_wheel(1),center_R_wheel(2),eps,diameter(1)*0.1,-curAngle,[1 1 1],'k',3) % missuse box to plot a line
    
    plotBox(center_L_wheel(1),center_L_wheel(2),diameter(1)*0.45,diameter(1)*0.05, curAngle,[1 1 1],'k',3) % plot slit
    plotBox(center_R_wheel(1),center_R_wheel(2),diameter(1)*0.45,diameter(1)*0.05,-curAngle,[1 1 1],'k',3) % plot slit
    
    plotBox(0,leftCrank*sin(curAngle),diameter(1)*0.08,diameter(1)*0.048, curAngle,col.grey2,'k',3) % left crank slider
    circlePatch(0,leftCrank*sin(curAngle),diameter(2)*0.04,col.green,'k',3) % green crank pin

    plotBox(center_R_wheel(1)+cos(curAngle)*rightCrank,center_R_wheel(2)-sin(-curAngle)*rightCrank,diameter(1)*0.08,diameter(1)*0.048,-curAngle,col.grey2,'k',3)  % right pen slider
  
    plot( [1 1]*0.06*diameter(1),[1 -1]*0.57*diameter(1),'-','color',col.darkGreen,'LineWidth',15) % vertical guide
    plot(-[1 1]*0.06*diameter(1),[1 -1]*0.57*diameter(1),'-','color',col.darkGreen,'LineWidth',15) % vertical guide

    ellipse(diameter(1),0,rightCrank+leftCrank,rightCrank,col.E,7)
    plot(center_R_wheel(1)+cos(curAngle)*rightCrank,center_R_wheel(2)-sin(-curAngle)*rightCrank,'.','color',col.E,'MarkerSize',60) % pen marker

   %% save animation
    xlim(xlimValues); ylim(ylimValues); drawnow; % set axis limits
        
    if iFrame == 1 % save SVG
        if ~isempty(which('plot2svg'))
            plot2svg(fullfile(pathstr, [fname '_a.svg']),figHandle) % by Juerg Schwizer, See http://www.zhinst.com/blogs/schwizer/
        else
            disp('plot2svg.m not available; see http://www.zhinst.com/blogs/schwizer/');
        end
    end
    f = getframe(figHandle);
    reducedRGBimage(:,:,:,iFrame) = imReduceSize(f.cdata,scaleReduction); % the size reduction: adds antialiasing
end
    
map = createImMap(reducedRGBimage,32,[1 1 1;struct2map(col)]); % colormap

im = uint8(ones(ySize,xSize,1,nFrames)); % allocate
for iFrame = 1:nFrames
    im(:,:,1,iFrame) = rgb2ind(reducedRGBimage(:,:,:,iFrame),map,'nodither');
end

imwrite(im,map,fullfile(pathstr, [fname '_a.gif']),'DelayTime',1/25,'LoopCount',inf) % save gif
disp([fname '_a.gif  has ' num2str(numel(im)/10^6 ,4) ' Megapixels']) % Category:Animated GIF files exceeding the 50 MP limit

function drawCogWheel(axesHandle,center,toothNumber,modul,colFilling,startOffset)
% DRAWTOOTHEDWHEEL - draw a simple Toothed Wheel
%
%  Input:
%    axesHandle:   
%    center:       [x y]
%    toothNumber:  scalar
%    modul:        scalar tooth "size"
%    colFilling:   color of filling [r g b]
%    startOffset:  start rotation (scalar)[rad] 

effectiveRadius = modul*toothNumber/2; % effective effectiveRadius

outsideRadius =     effectiveRadius+1*  modul; %                +---+             +---+
upperRisingRadius = effectiveRadius+0.5*modul; %               /     \           /     \
% effective Radius                             %              /       \         /       \
lowerRisingRadius = effectiveRadius-0.5*modul; %             I         I       I         I
rootRadius =        effectiveRadius-1.1*modul; %     + - - - +         + - - - +         +

angleBetweenTeeth = 2*pi/toothNumber; % angle between 2 teeth

angleOffPoints = (0:angleBetweenTeeth/16:(2*pi));


angleOffPoints = angleOffPoints+startOffset; % apply rotation offset

angleOffPoints(7:16:end) =  angleOffPoints(7:16:end)  + 1/toothNumber^1.2; % hack to create smaller tooth tip
angleOffPoints(11:16:end) = angleOffPoints(11:16:end) - 1/toothNumber^1.2; % hack to create smaller tooth tip

angleOffPoints(8:16:end)  = (angleOffPoints(7:16:end) +  angleOffPoints(9:16:end))/2; % shift the neighbouring tip point in accordingly
angleOffPoints(10:16:end) = (angleOffPoints(11:16:end) + angleOffPoints(9:16:end))/2; % shift the neighbouring tip point in accordingly

angleOffPoints(6:16:end) =  angleOffPoints(6:16:end)  + 1/toothNumber^1.7; % hack to create slender upperRisingRadius
angleOffPoints(12:16:end) = angleOffPoints(12:16:end) - 1/toothNumber^1.7; % hack to create slender upperRisingRadius

radiusOffPoints = angleOffPoints; % allocate with correct site

radiusOffPoints(1:16:end)  = rootRadius;        % center bottom         I
radiusOffPoints(2:16:end)  = rootRadius;        % left bottom           I
radiusOffPoints(3:16:end)  = rootRadius;        % left bottom corner    +
radiusOffPoints(4:16:end)  = lowerRisingRadius; % lower rising bottom      \
radiusOffPoints(5:16:end)  = effectiveRadius;   % rising edge                 \
radiusOffPoints(6:16:end)  = upperRisingRadius; % upper rising edge              \
radiusOffPoints(7:16:end)  = outsideRadius;     % right top  corner                 +
radiusOffPoints(8:16:end)  = outsideRadius;     % right top                         I
radiusOffPoints(9:16:end)  = outsideRadius;     % center top                        I
radiusOffPoints(10:16:end) = outsideRadius;     % left top                          I
radiusOffPoints(11:16:end) = outsideRadius;     % left top  corner                  +
radiusOffPoints(12:16:end) = upperRisingRadius; % upper falling edge             /
radiusOffPoints(13:16:end) = effectiveRadius;   % falling edge                /
radiusOffPoints(14:16:end) = lowerRisingRadius; % lower falling edge       /
radiusOffPoints(15:16:end) = rootRadius;        % right bottom  corner  +
radiusOffPoints(16:16:end) = rootRadius;        % right bottom          I

[X,Y] = pol2cart(angleOffPoints,radiusOffPoints);
X = X+center(1); % center offset
Y = Y+center(2); % center offset
patch(X,Y,colFilling,'EdgeColor',[0 0 0],'LineWidth',2)
% plot(axesHandle,X,Y,'-x','linewidth',2,'color',[0 0 0]);

% %% effective Radius
% [X,Y] = pol2cart(angleOffPoints,effectiveRadius);
% X = X+center(1); % center offset
% Y = Y+center(2); % center offset
% plot(axesHandle,X,Y,'-.','color',[0 0 0]);


function circlePatch(x,y,r,colFa,colEd,linw)
% x  coordinates of the center
% y  coordinates of the center
% r  is the radius of the circle
% colFa  face color  [r g b]
% colEd  edge color  [r g b]
% linw  line width
angleOffPoints = linspace(0,2*pi,300);
xc = x + r*cos(angleOffPoints);
yc = y + r*sin(angleOffPoints);
patch(xc,yc,colFa,'linewidth',linw,'EdgeColor',colEd); %


function plotBox(x,y,wi,hi,rot,colFa,colEd,linw)
% x  coordinates of the center
% y  coordinates of the center
% wi  half of width
% hi  half of height
% rot  dotation in [rad]
% colFa  face color  [r g b]
% colEd  edge color  [r g b]
% linw  line width

% joint in the middle of an edge to get nice corners
xs = [-wi -wi  wi  wi -wi -wi]; % x slit
ys = [ 0  -hi -hi  hi  hi   0]; % y slit
rotM = [cos(-rot) -sin(-rot); sin(-rot) cos(-rot)];      
vecTemp = rotM*[xs; ys]; % rotate slit
xs = vecTemp(1,:)+x;
ys = vecTemp(2,:)+y;
patch(xs,ys,colFa,'EdgeColor',colEd,'LineWidth',linw); %


function ellipse(x,y,a,b,col,linw)
% x coordinates of the center
% y coordinates of the center
% a radius1
% b radius2
% col  color [r g b]
% linw  line width
angleOffPoints = linspace(0,2.001*pi,300);
xe = x + a*cos(angleOffPoints);
ye = y + b*sin(angleOffPoints);
plot(xe,ye,'-','linewidth',linw,'color',col);


function map = struct2map(RGB)
% RGB: struct of depth 1 with [r g b] in each field
fNames = fieldnames(RGB);
nNames = numel(fNames);
map = NaN(nNames,3); % allocate
for iName = 1:nNames
    map(iName,:) = RGB.(fNames{iName}); % 
end


function im = imReduceSize(im,redSize)
% Input:
%  im:      image, [imRows x imColumns x nChannel x nStack] (unit8)
%                      imRows, imColumns: must be divisible by redSize
%                      nChannel: usually 3 (RGB) or 1 (grey)
%                      nStack:   number of stacked images
%                                usually 1; >1 for animations
%  redSize: 2 = half the size (quarter of pixels)
%           3 = third the size (ninth of pixels)
%           ... and so on
% Output:
%  imNew:  unit8([imRows/redSize x imColumns/redSize x nChannel x nStack])
%
% an alternative is : imNew = imresize(im,1/reduceImage,'bilinear');
%        BUT 'bicubic' & 'bilinear'  produces fuzzy lines
%        IMHO this function produces nicer results as "imresize"
 
[nRow,nCol,nChannel,nStack] = size(im);

if redSize==1;  return;  end % nothing to do
if redSize~=round(abs(redSize));             error('"redSize" must be a positive integer');  end
if rem(nRow,redSize)~=0;     error('number of pixel-rows must be a multiple of "redSize"');  end
if rem(nCol,redSize)~=0;  error('number of pixel-columns must be a multiple of "redSize"');  end

nRowNew = nRow/redSize;
nColNew = nCol/redSize;

im = double(im).^2; % brightness rescaling from "linear to the human eye" to the "physics domain"; see youtube: /watch?v=LKnqECcg6Gw
im = reshape(im, nRow, redSize, nColNew*nChannel*nStack); % packets of width redSize, as columns next to each other
im = sum(im,2); % sum in all rows. Size of result: [nRow, 1, nColNew*nChannel]
im = permute(im, [3,1,2,4]); % move singleton-dimension-2 to dimension-3; transpose image. Size of result: [nColNew*nChannel, nRow, 1]
im = reshape(im, nColNew*nChannel*nStack, redSize, nRowNew); % packets of width redSize, as columns next to each other
im = sum(im,2); % sum in all rows. Size of result: [nColNew*nChannel, 1, nRowNew]
im = permute(im, [3,1,2,4]); % move singleton-dimension-2 to dimension-3; transpose image back. Size of result: [nRowNew, nColNew*nChannel, 1]
im = reshape(im, nRowNew, nColNew, nChannel, nStack); % putting all channels (rgb) back behind each other in the third dimension
im = uint8(sqrt(im./redSize^2)); % mean; re-normalize brightness: "scale linear to the human eye"; back in uint8


function map = createImMap(imRGB,nCol,startMap)
% createImMap creates a color-map including predefined colors.
% "rgb2ind" creates a map but there is no option to predefine some colors,
%         and it does not handle stacked images.
% Input:
%   imRGB:     image, [imRows x imColumns x 3(RGB) x nStack] (unit8)
%   nCol:      total number of colors the map should have, [integer]
%   startMap:  predefined colors; colormap format, [p x 3] (double)

imRGB = permute(imRGB,[1 2 4 3]); % step1; make unified column-image (handling possible nStack)
imRGBcolumn = reshape(imRGB,[],1,3,1); % step2; make unified column-image

fullMap = double(permute(imRGBcolumn,[1 3 2]))./255; % "column image" to color map 
[fullMap,~,imMapColumn] = unique(fullMap,'rows'); % find all unique colores; create indexed colormap-image
% "cmunique" could be used but is buggy and inconvenient because the output changes between "uint8" and "double"

nColFul = size(fullMap,1);
nColStart = size(startMap,1);
disp(['Number of colors: ' num2str(nColFul) ' (including ' num2str(nColStart) ' self defined)']);

if nCol<=nColStart;  error('Not enough colors');        end
if nCol>nColFul;   warning('More colors than needed');  end

isPreDefCol = false(size(imMapColumn)); % init
 
for iCol = 1:nColStart
    diff = sum(abs(fullMap-repmat(startMap(iCol,:),nColFul,1)),2); % difference between a predefined and all colores
    [mDiff,index] = min(diff); % find matching (or most similar) color
    if mDiff>0.05 % color handling is not precise
        warning(['Predefined color ' num2str(iCol) ' does not appear in image'])
        continue
    end
    isThisPreDefCol = imMapColumn==index; % find all pixel with predefined color
    disp([num2str(sum(isThisPreDefCol(:))) ' pixel have predefined color ' num2str(iCol)]);
    isPreDefCol = or(isPreDefCol,isThisPreDefCol); % combine with overall list
end
[~,mapAdditional] = rgb2ind(imRGBcolumn(~isPreDefCol,:,:),nCol-nColStart,'nodither'); % create map of remaining colors
map = [startMap;mapAdditional];

Licensing edit

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current15:58, 24 October 2017Thumbnail for version as of 15:58, 24 October 2017600 × 260 (4.54 MB)Jahobr (talk | contribs)graph smoothing,
15:56, 30 May 2017Thumbnail for version as of 15:56, 30 May 2017600 × 260 (4.68 MB)Jahobr (talk | contribs)User created page with UploadWizard