Zahlenwert
ungefähr
Kettenbruch
sin
cos
Näherung
1
2
(
1
+
5
)
=
Φ
{\displaystyle {\frac {1}{2}}(1+{\sqrt {5}})=\Phi }
≈
1.61803398875
{\displaystyle \approx 1.61803398875}
[
1
;
1
¯
]
{\displaystyle [1;{\overline {1}}]}
1
,
1
,
2
,
3
,
5
,
8
,
13
,
21
,
34
,
55
,
89
,
144
,
233
,
377
,
610
,
…
{\displaystyle 1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,\ldots }
8
5
⋄
13
8
⋄
21
13
⋄
34
21
⋄
…
{\displaystyle {\frac {8}{5}}\diamond {\frac {13}{8}}\diamond {\frac {21}{13}}\diamond {\frac {34}{21}}\diamond \ldots }
1
2
(
5
−
1
)
=
Φ
−
1
{\displaystyle {\frac {1}{2}}({\sqrt {5}}-1)=\Phi -1}
=
1
Φ
{\displaystyle ={\frac {1}{\Phi }}}
≈
0.61803398875
{\displaystyle \approx 0.61803398875}
[
0
;
1
¯
]
{\displaystyle [0;{\overline {1}}]}
5
8
⋄
8
13
⋄
13
21
⋄
21
34
⋄
…
{\displaystyle {\frac {5}{8}}\diamond {\frac {8}{13}}\diamond {\frac {13}{21}}\diamond {\frac {21}{34}}\diamond \ldots }
1
4
(
5
−
1
)
=
Φ
−
1
2
{\displaystyle {\frac {1}{4}}({\sqrt {5}}-1)={\frac {\Phi -1}{2}}}
=
1
2
Φ
{\displaystyle ={\frac {1}{2\Phi }}}
≈
0.3090169947
{\displaystyle \approx 0.3090169947}
[
0
;
3
,
4
¯
]
{\displaystyle [0;3,{\overline {4}}]}
18
o
=
π
10
{\displaystyle 18^{o}={\frac {\pi }{10}}}
72
o
=
2
π
5
{\displaystyle 72^{o}={\frac {2\pi }{5}}}
4
13
⋄
17
55
⋄
72
233
{\displaystyle {\frac {4}{13}}\diamond {\frac {17}{55}}\diamond {\frac {72}{233}}}
2
4
5
−
5
{\displaystyle {\frac {\sqrt {2}}{4}}{\sqrt {5-{\sqrt {5}}}}}
=
5
8
−
5
8
{\displaystyle ={\sqrt {{\frac {5}{8}}-{\frac {\sqrt {5}}{8}}}}}
=
1
2
1
2
(
5
−
5
)
{\displaystyle ={\frac {1}{2}}{\sqrt {{\frac {1}{2}}(5-{\sqrt {5}})}}}
≈
0.58778525229
{\displaystyle \approx 0.58778525229}
[
0
;
1
,
1
,
2
,
2
,
1
,
6
,
1
,
56
,
…
]
{\displaystyle [0;1,1,2,2,1,6,1,56,\ldots ]}
36
o
=
π
5
{\displaystyle 36^{o}={\frac {\pi }{5}}}
54
o
=
3
π
10
{\displaystyle 54^{o}={\frac {3\pi }{10}}}
4379
7450
⋄
77
131
{\displaystyle {\frac {4379}{7450}}\diamond {\frac {77}{131}}}
1
4
(
1
+
5
)
=
Φ
2
{\displaystyle {\frac {1}{4}}(1+{\sqrt {5}})={\frac {\Phi }{2}}}
≈
0.8090169943749474
{\displaystyle \approx 0.8090169943749474}
[
0
;
1
,
4
¯
]
{\displaystyle [0;1,{\overline {4}}]}
54
o
=
3
π
10
{\displaystyle 54^{o}={\frac {3\pi }{10}}}
36
o
=
π
5
{\displaystyle 36^{o}={\frac {\pi }{5}}}
305
377
⋄
72
89
⋄
17
21
{\displaystyle {\frac {305}{377}}\diamond {\frac {72}{89}}\diamond {\frac {17}{21}}}
2
4
5
+
5
{\displaystyle {\frac {\sqrt {2}}{4}}{\sqrt {5+{\sqrt {5}}}}}
=
5
8
+
5
8
{\displaystyle ={\sqrt {{\frac {5}{8}}+{\frac {\sqrt {5}}{8}}}}}
=
1
2
1
2
(
5
+
5
)
{\displaystyle ={\frac {1}{2}}{\sqrt {{\frac {1}{2}}(5+{\sqrt {5}})}}}
≈
0.9510565162951536
{\displaystyle \approx 0.9510565162951536}
[
0
;
1
,
19
,
2
,
3
,
6
,
5
,
1
,
1
,
1
,
…
]
{\displaystyle [0;1,19,2,3,6,5,1,1,1,\ldots ]}
72
o
=
2
π
5
{\displaystyle 72^{o}={\frac {2\pi }{5}}}
18
o
=
π
10
{\displaystyle 18^{o}={\frac {\pi }{10}}}
855
899
⋄
136
143
⋄
39
41
{\displaystyle {\frac {855}{899}}\diamond {\frac {136}{143}}\diamond {\frac {39}{41}}}
108
o
=
3
π
5
{\displaystyle 108^{o}={\frac {3\pi }{5}}}
−
162
o
=
−
9
π
10
{\displaystyle -162^{o}=-{\frac {9\pi }{10}}}
6
−
2
4
{\displaystyle {\frac {{\sqrt {6}}-{\sqrt {2}}}{4}}}
=
3
−
1
2
2
{\displaystyle ={\frac {{\sqrt {3}}-1}{2{\sqrt {2}}}}}
≈
0.2588190
{\displaystyle \approx 0.2588190}
[
0
;
3
,
1
,
6
,
2
,
1
,
30
,
5
,
2
,
9
,
3
,
1
,
…
]
{\displaystyle [0;3,1,6,2,1,30,5,2,9,3,1,\ldots ]}
15
o
=
π
12
{\displaystyle 15^{o}={\frac {\pi }{12}}}
75
o
=
5
π
12
{\displaystyle 75^{o}={\frac {5\pi }{12}}}
22
85
⋄
675
2608
{\displaystyle {\frac {22}{85}}\diamond {\frac {675}{2608}}}
6
+
2
4
{\displaystyle {\frac {{\sqrt {6}}+{\sqrt {2}}}{4}}}
=
3
+
1
2
2
{\displaystyle ={\frac {{\sqrt {3}}+1}{2{\sqrt {2}}}}}
≈
0.96592582
{\displaystyle \approx 0.96592582}
[
0
;
1
,
28
,
2
,
1
,
7
,
21
,
1
,
8
,
1
,
…
]
{\displaystyle [0;1,28,2,1,7,21,1,8,1,\ldots ]}
75
o
=
5
π
12
{\displaystyle 75^{o}={\frac {5\pi }{12}}}
15
o
=
π
12
{\displaystyle 15^{o}={\frac {\pi }{12}}}
652
675
⋄
85
88
{\displaystyle {\frac {652}{675}}\diamond {\frac {85}{88}}}
2
2
{\displaystyle {\frac {\sqrt {2}}{2}}}
≈
0.7071067811865475
{\displaystyle \approx 0.7071067811865475}
[
0
;
1
,
2
¯
]
{\displaystyle [0;1,{\overline {2}}]}
45
o
=
π
4
{\displaystyle 45^{o}={\frac {\pi }{4}}}
5
7
⋄
12
17
⋄
29
41
⋄
70
99
⋄
169
239
⋄
408
577
{\displaystyle {\frac {5}{7}}\diamond {\frac {12}{17}}\diamond {\frac {29}{41}}\diamond {\frac {70}{99}}\diamond {\frac {169}{239}}\diamond {\frac {408}{577}}}
1
2
{\displaystyle {\frac {1}{2}}}
30
o
=
π
6
{\displaystyle 30^{o}={\frac {\pi }{6}}}
60
o
=
π
3
{\displaystyle 60^{o}={\frac {\pi }{3}}}
3
2
{\displaystyle {\frac {\sqrt {3}}{2}}}
≈
0.8660254037844386
{\displaystyle \approx 0.8660254037844386}
[
0
;
1
,
6
,
2
¯
]
{\displaystyle [0;1,{\overline {6,2}}]}
60
o
=
π
3
{\displaystyle 60^{o}={\frac {\pi }{3}}}
30
o
=
π
6
{\displaystyle 30^{o}={\frac {\pi }{6}}}
84
97
⋄
181
209
⋄
1170
1351
{\displaystyle {\frac {84}{97}}\diamond {\frac {181}{209}}\diamond {\frac {1170}{1351}}}
2
{\displaystyle {\sqrt {2}}}
≈
1.414213562373095
{\displaystyle \approx 1.414213562373095}
[
1
;
2
¯
]
{\displaystyle [1;{\overline {2}}]}
99
70
⋄
239
169
⋄
577
408
{\displaystyle {\frac {99}{70}}\diamond {\frac {239}{169}}\diamond {\frac {577}{408}}}
3
{\displaystyle {\sqrt {3}}}
≈
1.732050807568877
{\displaystyle \approx 1.732050807568877}
[
1
;
1
,
2
¯
]
{\displaystyle [1;{\overline {1,2}}]}
99
70
⋄
265
153
⋄
362
209
⋄
1351
780
{\displaystyle {\frac {99}{70}}\diamond {\frac {265}{153}}\diamond {\frac {362}{209}}\diamond {\frac {1351}{780}}}
5
{\displaystyle {\sqrt {5}}}
≈
2.23606797749979
{\displaystyle \approx 2.23606797749979}
[
2
;
4
¯
]
{\displaystyle [2;{\overline {4}}]}
95
56
⋄
521
233
⋄
682
305
{\displaystyle {\frac {95}{56}}\diamond {\frac {521}{233}}\diamond {\frac {682}{305}}}
4
(
2
−
1
)
3
=
ϰ
{\displaystyle 4{\frac {({\sqrt {2}}-1)}{3}}=\varkappa }
≈
0.5522847498307933
{\displaystyle \approx 0.5522847498307933}
[
0
;
1
,
1
,
4
,
3
¯
]
{\displaystyle [0;{\overline {1,1,4,3}}]}
5
9
⋄
16
29
⋄
21
38
⋄
37
67
⋄
169
306
⋄
544
985
{\displaystyle {\frac {5}{9}}\diamond {\frac {16}{29}}\diamond {\frac {21}{38}}\diamond {\frac {37}{67}}\diamond {\frac {169}{306}}\diamond {\frac {544}{985}}}