File:Archimedean Spiral animation with Gears in and out tracing.gif

Archimedean_Spiral_animation_with_Gears_in_and_out_tracing.gif(433 × 331 pixels, file size: 4.26 MB, MIME type: image/gif, looped, 355 frames, 17 s)

Captions

Captions

Add a one-line explanation of what this file represents

Summary edit

Description
English: Archimedean Spiral animation with Gears in and out tracing
Date
Source Own work
Author Jahobr
Other versions
GIF development
InfoField
 
This diagram was created with MATLAB by Jahobr.
Source code
InfoField

MATLAB code

function [] = Archimedean_Spiral_animation_with_Gears()
% Source code for drawing gears that produces archimedean spiral.
% The shape of the gears is not precise, it creates a decent GIF and a SVG.
%
% 2019-02-17 Jahobr

RGB.bkgd       = [1   1   1  ]; % white background
RGB.black      = [0   0   0  ]; %
RGB.red        = [1   0.2 0.2]; %
RGB.blue       = [0.2 0.2 1  ]; %
RGB.brightGrey = [0.8 0.8 0.8]; % gear
RGB.grey       = [0.5 0.5 0.5]; % rack
RGB.darkGrey   = [0.3 0.3 0.3]; % marks
RGB.green      = [0.1 0.7 0.1]; %
RGB.violet     = [0.6 0.2 0.8]; % 
RGB.cyan       = [0   0.8 0.8]; %

RGB = structfun(@(q)round(q*255)/255, RGB, 'UniformOutput',false); % round to values that are nicely uint8 compatible

[pathstr,fname] = fileparts(which(mfilename)); % save files under the same name and at file location

teeth = 16; % use "highly composite number"
module = 1/8; % gear size

for versionNr = 1:3

    if versionNr == 1
        curVers = 'positive_tracing';
        nFrames = 355;
        accFrames = 10; % frames for acceleration (first frame will be 0 last at full speed, so practicall it is accFrames-2)
        speed = [linspace(0,1,accFrames) ones(1,nFrames+1 -2*accFrames) linspace(1,0,accFrames)];
        speed = speed(1:end-1); % last speed is 0, this does nothing in cumsum; (compensated by +1 frames in center)
        angles = cumsum(speed)/sum(speed) *4*pi;
        xLimits = [-13.2 13.2];  % ADJUST
        yLimits = [-11.6  8.6];  % ADJUST
    elseif versionNr == 2
        curVers = 'positive_and_negative';
        nFrames = 155;
        accFrames = 10; % frames for acceleration (first frame will be 0 last at full speed, so practicall it is accFrames-2)
        speed = [linspace(0,1,accFrames) ones(1,nFrames+1 -2*accFrames) linspace(1,0,accFrames)];
        speed = speed(1:end-1); % last speed is 0, this does nothing in cumsum; (compensated by +1 frames in center)
        angles = cumsum(speed)/sum(speed) *2*pi;
        xLimits = [-13.2 13.2];  % ADJUST
        yLimits = [-10.1 10.1];  % ADJUST
    elseif versionNr == 3
        curVers = 'in_and_out_tracing';
        nFrames = 355;
        accFrames = 10; % frames for acceleration (first frame will be 0 last at full speed, so practicall it is accFrames-2)
        speed = [linspace(0,1,accFrames) ones(1,nFrames+1 -2*accFrames) linspace(1,0,accFrames)];
        speed = speed(1:end-1); % last speed is 0, this does nothing in cumsum; (compensated by +1 frames in center)
        angles = cumsum(speed)/sum(speed) *4*pi;
        xLimits = [-13.2 13.2];  % ADJUST
        yLimits = [-10.1 10.1];  % ADJUST
    end
    
    xRange = xLimits(2)-xLimits(1);
    yRange = yLimits(2)-yLimits(1);
    
    screenSize = get(groot,'Screensize')-[0 0 5 20]; % [1 1 width height] (minus tolerance for figure borders)
    screenAspectRatio = screenSize(3)/screenSize(4); % width/height
    imageAspectRatio = xRange/yRange;
    MegaPixelTarget = 51*10^6; % Category:Animated GIF files exceeding the 50 MP limit
    pxPerImage = MegaPixelTarget/nFrames; % pixel per gif frame
    ySize = sqrt(pxPerImage/imageAspectRatio); % gif height
    xSize = ySize*imageAspectRatio; % gif width
    xSize = floor(xSize); ySize = floor(ySize); % full pixels
    if imageAspectRatio > screenAspectRatio % width will be the problem
        scaleReduction = floor(screenSize(3)/xSize); % repeat as often as possible
    else % height will be the problem
        scaleReduction = floor(screenSize(4)/ySize); % repeat as often as possible
    end
    
    figHandle = figure(25554461); clf
    set(figHandle,'Units','pixel');
    set(figHandle,'Position',[1 1 xSize*scaleReduction ySize*scaleReduction]); % big start image for antialiasing later [x y width height]
    set(figHandle,'MenuBar','none',  'ToolBar','none'); % free real estate for a maximally large image
    set(figHandle,'Color',RGB.bkgd); % white background
    axesHandle = axes;
    hold(axesHandle,'on')
    axis off % invisible axes (no ticks)
    axis equal; 
    setXYlim(axesHandle,xLimits,yLimits); % set limits and drawnow;
    
    liSc = ySize*scaleReduction/800; % LineWidth scale; LineWidth is absolut, a bigger images needs thicker lines to keep them in proportion

    reducedRGBimage = uint8(ones(ySize,xSize,3,nFrames)); % allocate
    
    for iFrame = 1:nFrames
        cla(axesHandle)

        if versionNr == 1 % 'positive_tracing'
            % a moving dotted line jitters, and looks bad; so it is drawn static an the unused part is covered up
            plot([0              xLimits(2)+5],[0 0],':','Color',RGB.blue,'LineWidth', 6*liSc) % horizontal base line 
            plot([angles(iFrame) xLimits(2)+5],[0 0],'-','Color',RGB.bkgd,'LineWidth',10*liSc) % cover up unseen part
        elseif versionNr == 2 % 'positive_and_negative'
            plot(xLimits+[-5 5],[0 0],':','Color',RGB.blue,'LineWidth',6*liSc) % horizontal base line
        elseif versionNr == 3 % 'in_and_out_tracing'
            % a moving dotted line jitters, and looks bad; so it is drawn static an the unused part is covered up
            plot([ 0              xLimits(2)+5],[0 0],':','Color',RGB.blue,  'LineWidth', 6*liSc) % horizontal base line
            plot([ 0              xLimits(1)-5],[0 0],':','Color',RGB.violet,'LineWidth', 6*liSc) % horizontal base line
            plot([ angles(iFrame) xLimits(2)+5],[0 0],'-','Color',RGB.bkgd,  'LineWidth',10*liSc) % cover up unseen part
            plot([-angles(iFrame) xLimits(1)-5],[0 0],'-','Color',RGB.bkgd,  'LineWidth',10*liSc) % cover up unseen part
        end

        drawSpurWheel([0 0],teeth,module,RGB.brightGrey,2*liSc,RGB.black,-angles(iFrame) ); % cogwheel
        sideOffset = angles(iFrame)*teeth*module/2;
        drawRack([0 teeth*module/2],150,module,RGB.grey,2*liSc,RGB.black,sideOffset+ pi/16,1);
        
        if versionNr == 3
            drawRack([0 -teeth*module/2],150,module,RGB.grey,2*liSc,RGB.black,-sideOffset+ pi/16,0);
        end
        
        for iRotMark = (-4:4)*teeth*module*pi
            plot([1 1]* (sideOffset+iRotMark), [10 17]*module,'-','Color',RGB.darkGrey,'LineWidth',4*liSc) % vertical marker on upper rack
            if versionNr ==3
                plot([1 1]* (-sideOffset+iRotMark), [10 17]*-module,'-','Color',RGB.darkGrey,'LineWidth',4*liSc) % vertical marker on lower rack
            end
        end
        
        xCoord = [4 0 0];
        yCoord = [0 0 4];
        
        rotAngle = -angles(iFrame);
        if iFrame == nFrames
            rotAngle = 0; % fix slightly angled lines
        end
        [xCoord,yCoord] = rotateCordiantes(xCoord,yCoord,rotAngle);
        plot(xCoord,yCoord,'-','Color','k','LineWidth',4*liSc) % coordinate system lines
        
        xArrow = [4.5 4.0  4.0];
        yArrow = [0  -0.15 0.15];
        
        [xArrow,yArrow] = rotateCordiantes(xArrow,yArrow,rotAngle);
        patch(xArrow,yArrow,'k');
        [xArrow,yArrow] = rotateCordiantes(xArrow,yArrow,pi/2);
        patch(xArrow,yArrow,'k');
        
        curvePoints = linspace(0,8*pi,500);
        [x,y] = pol2cart(curvePoints-angles(iFrame),curvePoints);

        if versionNr == 1 % 'positive_tracing'
            
            plot(x,y,  '-','Color',RGB.red ,'LineWidth',3*liSc) % curve
            
            [x,y] = pol2cart(angles(1:iFrame)-angles(iFrame),angles(1:iFrame));
            plot( x,y,  '-','Color',RGB.red ,'LineWidth',7*liSc) % trace curve
            
            plot(sideOffset*[1 1],[0 8*module],'-','Color',RGB.blue,'LineWidth',6*liSc) % verical base line

            plot(sideOffset,0,'.','Color',RGB.red,  'MarkerSize',60*liSc,'LineWidth',5*liSc) % color marker on trace point of curve
            plot(sideOffset,0,'o','Color',RGB.blue ,'MarkerSize',20*liSc,'LineWidth',5*liSc) % color marker on trace point of curve
            
        elseif versionNr == 2 % 'positive_and_negative'

            [xa,ya] = pol2cart(-curvePoints-angles(iFrame),-curvePoints);
            plot(xa,ya,  '-','Color',RGB.cyan ,'LineWidth',7*liSc) % anti-curve
            plot( x, y,  '-','Color',RGB.red  ,'LineWidth',7*liSc) % curve

            for iRotMark = (-4:4)*teeth*module*pi
                plot(sideOffset*[1 1]+iRotMark,[0 8*module],'-','Color',RGB.blue,'LineWidth',6*liSc) % verical base line
            end
            
            for iRotMark = (-4:4)*teeth*module*pi
                if sideOffset+iRotMark >= 0
                    plot(sideOffset+iRotMark,0,'.','Color',RGB.red ,'MarkerSize',60*liSc,'LineWidth',5*liSc) % color marker on trace point of curve
                else
                    plot(sideOffset+iRotMark,0,'.','Color',RGB.cyan ,'MarkerSize',60*liSc,'LineWidth',5*liSc) % color marker on trace point of curve
                end
                plot(sideOffset+iRotMark,0,'o','Color',RGB.blue ,'MarkerSize',20*liSc,'LineWidth',5*liSc) % color marker on trace point of curve
            end
            if iFrame == nFrames
                plot(0,0,'.','Color',RGB.cyan ,'MarkerSize',60*liSc,'LineWidth',5*liSc) % color marker on trace point of curve
                plot(0,0,'o','Color',RGB.blue ,'MarkerSize',20*liSc,'LineWidth',5*liSc) % color marker on trace point of curve
            end
            
        elseif versionNr == 3 % 'in_and_out_tracing'
            
            plot(-x,-y,'-','Color',RGB.green,'LineWidth',3*liSc) % anti curve
            plot( x, y,'-','Color',RGB.red,  'LineWidth',3*liSc) % curve

            [x,y] = pol2cart(angles(1:iFrame)-angles(iFrame),angles(1:iFrame));
            plot(-x,-y,'-','Color',RGB.green ,'LineWidth',7*liSc) % trace anti curve
            plot( x, y,'-','Color',RGB.red,   'LineWidth',7*liSc) % trace curve
            
            plot( sideOffset*[1 1], [0 8*module],'-','Color',RGB.blue,  'LineWidth',6*liSc) % verical base line
            plot(-sideOffset*[1 1],-[0 8*module],'-','Color',RGB.violet,'LineWidth',6*liSc) % verical base line
            
            plot(-sideOffset,0,'.','Color',RGB.green,  'MarkerSize',60*liSc,'LineWidth',5*liSc) % color marker on trace point of curve
            plot(-sideOffset,0,'o','Color',RGB.violet ,'MarkerSize',20*liSc,'LineWidth',5*liSc) % color marker on trace point of curve
            
            plot(sideOffset,0,'.','Color',RGB.red,  'MarkerSize',60*liSc,'LineWidth',5*liSc) % color marker on trace point of curve
            plot(sideOffset,0,'o','Color',RGB.blue ,'MarkerSize',20*liSc,'LineWidth',5*liSc) % color marker on trace point of curve

        end
        

        %% save animation
        setXYlim(axesHandle,xLimits,yLimits); % reset limits and drawnow
        
        f = getframe(figHandle);
        reducedRGBimage(:,:,:,iFrame) = imReduceSize(f.cdata,scaleReduction); % the size reduction: adds antialiasing
        
        if iFrame == nFrames % SVG
            if ~isempty(which('plot2svg'))
                plot2svg(fullfile(pathstr, [fname '_' curVers '.svg']),figHandle) % by Juerg Schwizer
            else
                disp('plot2svg.m not available; see http://www.zhinst.com/blogs/schwizer/');
            end
        end
    end
    
    RGBcurrent = RGB; % copy colormap; to be pruned to the used colors
    if versionNr == 1
        RGBcurrent = rmfield(RGBcurrent,{'green','violet','cyan'}); % remove unused colors
        nColors = 32;
    elseif versionNr == 2
        RGBcurrent = rmfield(RGBcurrent,{'green','violet'}); % remove unused colors
        nColors = 64;
    elseif versionNr == 3
        RGBcurrent = rmfield(RGBcurrent,{'cyan'}); % remove unused colors
        nColors = 64;
    end

    startMap = cell2mat(struct2cell(RGBcurrent)); % struct2colormap; % list of map colors that are not allowed to be changed
    map = createImMap(reducedRGBimage,nColors,startMap);  % full colormap
    
    im = uint8(ones(ySize,xSize,1,nFrames)); % allocate
    for iFrame = 1:nFrames
        im(:,:,1,iFrame) = rgb2ind(reducedRGBimage(:,:,:,iFrame),map,'nodither');
    end
    
    imwrite(im,map,fullfile(pathstr, [fname '_' curVers '.gif']),'DelayTime',1/25,'LoopCount',inf) % save gif
    disp([fname '_' curVers '.gif  has ' num2str(numel(im)/10^6 ,4) ' Megapixels']) % Category:Animated GIF files exceeding the 50 MP limit
end

function drawSpurWheel(center,toothNumber,module,fillC,linW,linC,startOffset)
% DRAWSPURWHEEL - draw a simple Toothed Wheel
%    center:       [x y]
%    toothNumber:  scalar
%    module:       scalar tooth "size"
%    fillC:        color of filling [r g b]
%    linW:         LineWidth
%    linC:         LineColor
%    startOffset:  start rotation (scalar)[rad]

effectiveRadius = module*toothNumber/2; % effective Radius

outsideRadius =     effectiveRadius+1*  module; %                +---+             +---+
upperRisingRadius = effectiveRadius+0.5*module; %               /     \           /     \
% effective Radius                              %              /       \         /       \
lowerRisingRadius = effectiveRadius-0.5*module; %             I         I       I         I
rootRadius =        effectiveRadius-1.1*module; %     + - - - +         + - - - +         +

angleBetweenTeeth = 2*pi/toothNumber; % angle between 2 teeth
angleOffPoints = (0:angleBetweenTeeth/16:(2*pi));
angleOffPoints = angleOffPoints+startOffset; % apply rotation offset

angleOffPoints(7:16:end) =  angleOffPoints(7:16:end)  + 1/toothNumber^1.2; % hack to create smaller tooth tip
angleOffPoints(11:16:end) = angleOffPoints(11:16:end) - 1/toothNumber^1.2; % hack to create smaller tooth tip

angleOffPoints(8:16:end)  = (angleOffPoints(7:16:end) +  angleOffPoints(9:16:end))/2; % shift the neighbouring tip point in accordingly
angleOffPoints(10:16:end) = (angleOffPoints(11:16:end) + angleOffPoints(9:16:end))/2; % shift the neighbouring tip point in accordingly

angleOffPoints(6:16:end) =  angleOffPoints(6:16:end)  + 1/toothNumber^1.7; % hack to create slender upperRisingRadius
angleOffPoints(12:16:end) = angleOffPoints(12:16:end) - 1/toothNumber^1.7; % hack to create slender upperRisingRadius

radiusOffPoints = angleOffPoints; % allocate with correct site

radiusOffPoints( 1:16:end) = rootRadius;        % center bottom         I
radiusOffPoints( 2:16:end) = rootRadius;        % left bottom           I
radiusOffPoints( 3:16:end) = rootRadius;        % left bottom corner    +
radiusOffPoints( 4:16:end) = lowerRisingRadius; % lower rising bottom      \
radiusOffPoints( 5:16:end) = effectiveRadius;   % rising edge                 \
radiusOffPoints( 6:16:end) = upperRisingRadius; % upper rising edge              \
radiusOffPoints( 7:16:end) = outsideRadius;     % right top  corner                 +
radiusOffPoints( 8:16:end) = outsideRadius;     % right top                         I
radiusOffPoints( 9:16:end) = outsideRadius;     % center top                        I
radiusOffPoints(10:16:end) = outsideRadius;     % left top                          I
radiusOffPoints(11:16:end) = outsideRadius;     % left top  corner                  +
radiusOffPoints(12:16:end) = upperRisingRadius; % upper falling edge             /
radiusOffPoints(13:16:end) = effectiveRadius;   % falling edge                /
radiusOffPoints(14:16:end) = lowerRisingRadius; % lower falling edge       /
radiusOffPoints(15:16:end) = rootRadius;        % right bottom  corner  +
radiusOffPoints(16:16:end) = rootRadius;        % right bottom          I

[X,Y] = pol2cart(angleOffPoints,radiusOffPoints);
X = X+center(1); % center offset
Y = Y+center(2); % center offset
patch(X,Y,fillC,'EdgeColor',linC,'LineWidth',linW)


function drawRack(center,toothNumber,module,fillC,linW,linC,startOffset,top)
%    center:       [x y]
%    toothNumber:  scalar
%    module:       scalar tooth "size"
%    fillC:        color of filling [r g b]
%    linW:         LineWidth
%    linC:         LineColor
%    startOffset:  initial shift
%    top:          1=top 0=bottom
x = (0:toothNumber*4-1)*pi*module/4;
x = x-mean(x)+center(1)+startOffset;

y = zeros(size(x));

y(1:4:end) = y(1:4:end)+1.1*module; %    +###I bottom
y(2:4:end) = y(2:4:end)-1  *module; % +######I tip
y(3:4:end) = y(3:4:end)-1  *module; % +######I tip
y(4:4:end) = y(4:4:end)+1.1*module; %    +###I bottom

x(1:4:end) = x(1:4:end)-0.14*module; % bottom smaller
x(2:4:end) = x(2:4:end)+0.14*module; % tip smaller
x(3:4:end) = x(3:4:end)-0.14*module; % tip smaller
x(4:4:end) = x(4:4:end)+0.14*module; % bottom smaller

x = [x(1) x x(end)];
y = [y(1)+9*module y y(end)+9*module];

if ~top
    y = -y; % flip
end
y = y+center(2);
patch(x,y,fillC,'EdgeColor',linC,'LineWidth',linW);


function setXYlim(axesHandle,xLimits,yLimits)
% set limits; practically the axis overhangs the figure all around, to
% hide rendering error at line-ends.
% Input:
%   axesHandle:        
%   xLimits, yLimits:  [min max]
overh = 0.05; % 5% overhang all around; 10% bigger in x and y
xlim([+xLimits(1)*(1+overh)-xLimits(2)*overh  -xLimits(1)*overh+xLimits(2)*(1+overh)])
ylim([+yLimits(1)*(1+overh)-yLimits(2)*overh  -yLimits(1)*overh+yLimits(2)*(1+overh)])
set(axesHandle,'Position',[-overh -overh  1+2*overh 1+2*overh]); % stretch axis as bigger as figure, [x y width height]
drawnow;


function [x,y] = rotateCordiantes(x,y,anglee)
% x coordinates of the center
% y coordinates of the center
% anglee angle of rotation in [rad]
rotM = [cos(anglee) -sin(anglee); sin(anglee) cos(anglee)];
x_y = rotM*[x(:)';y(:)'];
x = x_y(1,:);
y = x_y(2,:);


function im = imReduceSize(im,redSize)
% Input:
%  im:      image, [imRows x imColumns x nChannel x nStack] (unit8)
%                      imRows, imColumns: must be divisible by redSize
%                      nChannel: usually 3 (RGB) or 1 (grey)
%                      nStack:   number of stacked images
%                                usually 1; >1 for animations
%  redSize: 2 = half the size (quarter of pixels)
%           3 = third the size (ninth of pixels)
%           ... and so on
% Output:
%  im:     [imRows/redSize x imColumns/redSize x nChannel x nStack] (unit8)
%
% an alternative is: imNew = imresize(im,1/reduceImage,'bilinear');
%        BUT 'bicubic' & 'bilinear'  produces fuzzy lines
%        IMHO this function produces nicer results as "imresize"
 
[nRow,nCol,nChannel,nStack] = size(im);

if redSize==1;  return;  end % nothing to do
if redSize~=round(abs(redSize));             error('"redSize" must be a positive integer');  end
if rem(nRow,redSize)~=0;     error('number of pixel-rows must be a multiple of "redSize"');  end
if rem(nCol,redSize)~=0;  error('number of pixel-columns must be a multiple of "redSize"');  end

nRowNew = nRow/redSize;
nColNew = nCol/redSize;

im = double(im).^2; % brightness rescaling from "linear to the human eye" to the "physics domain"; see youtube: /watch?v=LKnqECcg6Gw
im = reshape(im, nRow, redSize, nColNew*nChannel*nStack); % packets of width redSize, as columns next to each other
im = sum(im,2); % sum in all rows. Size of result: [nRow, 1, nColNew*nChannel]
im = permute(im, [3,1,2,4]); % move singleton-dimension-2 to dimension-3; transpose image. Size of result: [nColNew*nChannel, nRow, 1]
im = reshape(im, nColNew*nChannel*nStack, redSize, nRowNew); % packets of width redSize, as columns next to each other
im = sum(im,2); % sum in all rows. Size of result: [nColNew*nChannel, 1, nRowNew]
im = permute(im, [3,1,2,4]); % move singleton-dimension-2 to dimension-3; transpose image back. Size of result: [nRowNew, nColNew*nChannel, 1]
im = reshape(im, nRowNew, nColNew, nChannel, nStack); % putting all channels (rgb) back behind each other in the third dimension
im = uint8(sqrt(im./redSize^2)); % mean; re-normalize brightness: "scale linear to the human eye"; back in uint8


function map = createImMap(imRGB,nCol,startMap)
% createImMap creates a color-map including predefined colors.
% "rgb2ind" creates a map but there is no option to predefine some colors,
%         and it does not handle stacked images.
% Input:
%   imRGB:     image, [imRows x imColumns x 3(RGB) x nStack] (unit8)
%   nCol:      total number of colors the map should have, [integer]
%   startMap:  predefined colors; colormap format, [p x 3] (double)

imRGB = permute(imRGB,[1 2 4 3]); % step1; make unified column-image (handling possible nStack)
imRGBcolumn = reshape(imRGB,[],1,3,1); % step2; make unified column-image

fullMap = double(permute(imRGBcolumn,[1 3 2]))./255; % "column image" to color map 
[fullMap,~,imMapColumn] = unique(fullMap,'rows'); % find all unique colors; create indexed colormap-image
% "cmunique" could be used but is buggy and inconvenient because the output changes between "uint8" and "double"

nColFul = size(fullMap,1);
nColStart = size(startMap,1);
disp(['Number of colors: ' num2str(nColFul) ' (including ' num2str(nColStart) ' self defined)']);

if nCol<=nColStart;  error('Not enough colors');        end
if nCol>nColFul;   warning('More colors than needed');  end

isPreDefCol = false(size(imMapColumn)); % init
 
for iCol = 1:nColStart
    diff = sum(abs(fullMap-repmat(startMap(iCol,:),nColFul,1)),2); % difference between a predefined and all colors
    [mDiff,index] = min(diff); % find matching (or most similar) color
    if mDiff>0.05 % color handling is not precise
        warning(['Predefined color ' num2str(iCol) ' does not appear in image'])
        continue
    end
    isThisPreDefCol = imMapColumn==index; % find all pixel with predefined color
    disp([num2str(sum(isThisPreDefCol(:))) ' pixel have predefined color ' num2str(iCol)]);
    isPreDefCol = or(isPreDefCol,isThisPreDefCol); % combine with overall list
end
[~,mapAdditional] = rgb2ind(imRGBcolumn(~isPreDefCol,:,:),nCol-nColStart,'nodither'); % create map of remaining colors
map = [startMap;mapAdditional];


Licensing edit

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current00:21, 17 February 2019Thumbnail for version as of 00:21, 17 February 2019433 × 331 (4.26 MB)Jahobr (talk | contribs)better colormap
13:07, 24 June 2017Thumbnail for version as of 13:07, 24 June 2017430 × 330 (4.14 MB)Jahobr (talk | contribs)User created page with UploadWizard